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Introduction 

As bioassessment data become more widely used in regulatory applications such as biocriteria 

(Davis and Simon 1995, Council for European Communities 2000, USEPA 2002, Yoder and Barbour 2009), 

the need for both regional consistency and site-specific accuracy becomes increasingly important. Many 

bioassessment indices developed to support stream condition assessments have properly emphasized 

regional accuracy (e.g., Ode et al. 2005, Stoddard et al. 2008).  In surveys of large areas, site-specific 

errors do not affect regional condition estimates as long as errors are unbiased (Herbst and Silldorff 

2006, Ode et al. 2008, Yuan et al. 2008). However, when bioassessment data are used in site-specific 

applications like regulatory assessments, site-specific errors are more consequential and may lead to 

inappropriate, expensive, and ultimately unsuccessful management decisions. Therefore, bioassessment 

indices must accommodate both regional consistency and site specificity if used for regulatory 

applications (Herlihy et al. 2008).  

Achieving both consistency and site specificity is particularly challenging in environmentally 

complex regions (Hughes 1995, Yuan et al. 2008, Pont et al. 2009). Large natural gradients create unique 

environmental settings that support distinct biological communities in unaltered streams (Townsend 

and Hildrew 1994, Statzner et al. 2004, Poff et al. 2006). Environmental diversity can complicate 

interpretation of indices that ignore this source of variability. Bioassessment indices should account for 

different aquatic assemblages expected under undisturbed conditions so that deviations from reference 

conditions due to anthropogenic disturbance are not confounded by natural variability, and they should 

do so equally well in all settings (Schoolmaster et al. 2013). 

Several multi-metric indices (MMIs) based on benthic macroinvertebrates (BMIs) have been 

developed for California streams, each built for different regions of the state and each differing in 

accuracy, precision, and sensitivity (e.g., Ode et al. 2005, Rehn 2009, Herbst and Silldorff 2009). Such 

regionalizations (or other typological ways of matching assessed sites to appropriate reference sites) are 

common to MMI development but may not adequately partition systematic and continuous variation 

across sites (Cao and Hawkins 2011).  A regional approach, such as the one used so far in California, may 

lead to inconsistent tools that confound inter-regional interpretability and preclude unbiased statewide 

assessments (Pont 2009; Hawkins et al. 2010, Cao and Hawkins 2011). Inconsistency may lead to more 

regulatory actions in some regions than others because of the different assessment tools used, not 

because of conditions of the sites. Despite their ability to link the composition of a biological assemblage 

with functional measures of ecosystem health (Barbour et al. 1995, Gerritsen 1995, Collier 2009), the 

typological nature of typical MMIs has often been cited as one of their shortcomings (Hannaford and 

Resh 1995, Norris 1995, Reynoldson et al. 1997, Norris and Hawkins 2000).   
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Predictive modeling of the reference condition is an increasingly common way to obtain site-

specific expectations for diverse environmental settings (Hawkins et al. 2010). Thus far, predictive 

modeling has almost exclusively been applied to multivariate endpoints that focus on taxonomic 

completeness of a sample , such as the ratio of observed-to-expected taxa (O/E, Wright et al. 2000), or 

location of sites in ordination-space (e.g., BEAST, Reynoldson et al. 1995). An O/E index for BMI 

assemblages was developed for mountainous regions of California in 2005 (unpublished, but see Ode et 

al. 2008) but was based on a limited number (209) of reference sites that poorly represented several 

regions of the state.  Applications of predictive models to multimetric indices (MMIs) are relatively new 

(e.g., Cao et al. 2007, Pont et al. 2009, Vander Laan et al. in press).  The ecological comprehensiveness of 

MMIs, which include metrics related to taxonomic diversity, life history traits, trophic groups, habits, 

and pollution tolerance, provides useful information about biological condition that may not be 

incorporated in an index based strictly on loss of taxa (Gerritsen et al. 1995).  

In addition to predictive modeling, the use of multiple endpoints or site-specific thresholds may 

also improve site specificity in bioassessment. Not all endpoints work equally well under all settings or 

respond similarly to all disturbances, a primary justification for integrating metrics into multimetric 

indices (Karr et al. 1981, Stoddard et al. 2008, Collier 2009, Schoolmaster et al. 2012) or using multiple 

biological assemblages in stream assessments (Council of European Communities 2000, Hering et al. 

2006, Resh 2008). Site-specific thresholds also may be an appropriate approach where large differences 

in variability among settings exist (Death and Winterbourne 1994).  For example, Yuan et al. (2008) 

observed reference site standard deviations in an O/E index for the United States ranged from a low of 

0.17 to a high of 0.34 by ecoregion, justifying different thresholds for each region.  In such 

circumstances, biological expectations may be similar among settings, but variable thresholds allow 

larger deviations from expectations in some settings than others 

  Our goal in this study was to construct a scoring tool for perennial wadeable streams that 

achieves consistency with site-specificity across environmentally complex California, a region with nine 

Level III ecoregions (Omernik 1987).  We accomplished this goal in a three step process.  First, we 

constructed BMI –based predictive models for taxa loss (O/E) and multi-metric (pMMI) endpoints.  

Second, we compared the performance of O/E, pMMI, and a combined O/E + pMMI endpoint for 

accuracy, precision, and sensitivity among the variety of environmental settings in California.  Third, we 

evaluated the utility of incorporating site-specific thresholds for interpreting the assessment index.  The 

primary motivation for model development, endpoint comparison, and threshold evaluation was to 

support upcoming regulatory application of biological condition for the State of California. However, our 

broader goal was to produce a robust assessment tool that would support a wide variety of 

bioassessment applications.
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Methods 

California contains continental-scale environmental diversity within 424,000 km2,  encompassing 

some of the highest, lowest, hottest, coldest, wettest, and driest portions of the United States. It 

supports temperate rainforests in the North Coast, deserts in the East, and chaparral, oak woodlands, 

and grasslands with a Mediterranean-climate in central parts of the state (Omernik 1987). Although 

much of the state is protected open space, vast regions of the state has been converted to agricultural 

(e.g., the Central Valley) or urban (e.g., the South Coast and the San Francisco Bay Area) land uses 

(Sleeter et al. 2011). Forestry, grazing, mining, recreation, and other resource extraction activities occur 

throughout less populated regions of the state. To facilitate data evaluation, the state was divided into 

six regions and ten subregions based on ecoregional (Omernik 1987) and hydrologic boundaries (Figure 

1). 

Aggregation of dataset 

More than 20 federal, state, and regional monitoring programs were inventoried to assemble 

data sets for index development. A total of 4457 samples from 2352 unique sites between 1999 and 

2010 were aggregated into a single database.  When multiple programs sampled identical candidate 

sites or sites in close proximity (within 300 m), data were treated as a single site to minimize 

redundancy.   

Biological data 

Slightly more than half (55%) of BMI data were collected using the reachwide protocol of the US 

EPA’s Environmental Monitoring and Assessment Program (EMAP, Peck et al. 2006), but the rest were 

collected with targeted riffle protocols (Herbst and Silldorff 2006, Rehn et al. 2007).  Previous studies 

have documented the comparability of these protocols (Gerth and Herlihy 2006, Herbst and Silldorff 

2006, Rehn et al. 2007).  Approximately half of the samples were identified to Level 2 (i.e., most taxa to 

species, with Chironomidae to genus) in the Standardized Taxonomic Effort of the Southwest 

Association of Freshwater Invertebrate Taxonomists (SAFIT, Richards and Rogers 2011), and half were 

identified to Level 1 (most taxa to genus, with Chironomidae to family). 

Because sample size and taxonomic effort varied widely within the dataset, samples were 

screened for modeling adequacy according to three criteria, based on the intended requirements of the 

two endpoints. For the MMI, 500-count samples were desired, so samples with fewer than 450 (i.e., 

within 10% of target) individuals were excluded. For the O/E, only unambiguously distinct taxa (i.e., taxa 

identified to a standard level) may be used. Therefore, operational taxonomic units (OTUs) were defined 

(generally, most taxa to genus, with Chironomidae to subfamily), and ambiguous taxa (e.g., an insect 

identified to family when the OUT specifies genus) were excluded from analyses in the development of 

the O/E. Because at least 400 organisms were desired for calculation of the O/E, samples with fewer 

than 360 individuals and fewer than 50% ambiguous taxa were excluded from analysis. Screening for 

requirements of both models yielded a data set of 3518 samples from 1985 sites. 

Geographic data 
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A large number of spatial data sources were aggregated to characterize natural and 

anthropogenic gradients known to affect benthic communities, such as land cover, road density, 

hydrologic alteration, mining, geology, elevation and climate (Table 1 and 2, described in Ode et al., in 

review). Land cover and other measures of human activity were quantified into metrics that were 

calculated at three spatial scales: within the entire upstream drainage area (watershed), within 5 km 

upstream and within 1 km upstream.  Polygons defining these spatial analysis units were created using 

ArcGIS tools (ESRI 2009).  

Designation of reference sites and creation of data subsets 

For development and evaluation of assessment tools, the data set was divided into three 

subsets: Reference sites, stressed sites, and intermediate sites. A “minimally disturbed” definition was 

used to identify reference sites (Stoddard et al. 2006) using objective criteria based primarily on 

landcover parameters as described in Ode et al. (in review); screening criteria are provided in Table 2. 

Reference sites were identified as those that had low levels of urban or agricultural land use or road 

density at the catchment scale, as well as within 5 km and 1 km upstream of the catchment. Sites were 

also excluded if there was moderate human activity in the riparian zone (measured as W1_Hall, 

Kaufmann et al. 1999), mining activity upstream, dams within 10 km, altered conductivity, or invasive 

invertebrates known at the sites.  

Designation of highly stressed sites was necessary for calibration of the MMI (described below), 

and used for evaluation of both endpoints. Highly stressed sites were identified as those that met any of 

the following criteria: Developed land at the watershed, 1 km- or 5 km-scales ≥ 50%; road density ≥ 5 

km/km2; or W1_Hall ≥ 5. The reference data set was evaluated to ensure good representation of as 

many environmental settings as possible. Sites not identified as reference or stressed were designated 

as intermediate sites.  

Reference and stressed sites were further divided into calibration (80%) and validation (20%) 

sets. Assignment to these sets was stratified to ensure representation of various subregions in both 

calibration and validation data sets. Because reference sites were found in nearly all regions of the state, 

9 of the 10 subregions were used for stratification; the one reference site found in the Central Valley 

was combined into a stratum with sites from the Interior Chaparral.  

In contrast to reference sites, stressed sites were scarce in mountainous regions, requiring a 

different stratification scheme for creation of calibration and validation site sets. Stressed sites were 

aggregated into five strata: North Coast, Chaparral, Central Valley, South Coast Xeric + Deserts, and 

Other Mountains (including the Modoc, Sierras, and South Coast Mountains). To avoid 

overrepresentation of highly stressed regions within the development data set, only 40 stressed sites 

from each region were assigned to the calibration sets. For sites with data from multiple sampling 

events, one sample was randomly designated for use in index development or performance evaluation. 

The distribution of sites used for development is summarized in Table 3. 

Predicting number of taxa and development of the O/E 
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 Taxonomic completeness, as measured by the ratio of observed-to-expected taxa (O/E), 

quantifies degradation as loss of taxa. To measure taxonomic completeness of bioassessment samples, a 

RIVPACS-type O/E index was developed to calculate the ratio of observed to expected taxa following 

Wright et al. (2000). RIVPACS models identify biologically homogeneous clusters of reference sites, then 

uses predictive models to determine probabilities that a test site is similar to each cluster. The 

probability of observing a taxon at a given test site (i.e., the capture probability) is then calculated as the 

probability of being similar to a reference cluster, multiplied by the frequency of the taxon in that 

cluster, summed across all reference clusters. 

 In order to identify biologically homogenous clusters of reference sites, samples were 

aggregated to OTUs and standardized to a count of 400 through random subsampling without 

replacement, after excluding ambiguous taxa. Standard samples were then transformed into 

presence/absence data and rare OTUs (i.e., occurring in fewer than 5% of reference calibration samples) 

were removed. A dendrogram was created using Sørensen as a distance measure and flexible beta (beta 

= -0.25) for linkage. Clusters containing at least 10 sites and subtended by relatively long branches (to 

maximize variance in taxonomic composition among groups) were manually identified through visual 

inspection of the dendrogram. Cluster analyses were performed in R version 2.15.2 using scripts written 

by J. Van Sickle and the cluster package (Maechler et al. 2012). 

 In order to predict group membership for novel sites, a 10,000-tree random forest model was 

constructed using the randomForest package in R (Liaw and Wiener 2002). First, candidate predictors 

that were minimally correlated with each other (Pearson's R2 ≤ 0.5) were identified (Table 1); within sets 

of correlated variables, the one that was simplest to calculate (e.g., calculated from point data, rather 

than delineated catchments) was selected as a candidate predictor. All candidate predictors were 

derived from GIS data and reflected environmental gradients that are minimally affected by human 

activity (e.g., elevation, geology). An initial model using all candidate predictors was then refined by 

hand using subsets of predictors with high observed Gini importance.  A final model was selected that 

minimized standard deviation of O/E scores at calibration reference sites with the fewest number of 

predictors. Null models in which all reference calibration sites are treated as a single group were also 

produced (Van Sickle et al. 2005). Because previous studies have shown that exclusion of species with 

low capture probabilities improves model performance (e.g., Hawkins et al. 2000, Ostermiller and 

Hawkins 2004), the O/E model based on a capture probability ≥ 0.5 was used.  

Predicting metric values and development of the pMMI 

 Alterations to the ecological structure of samples may be measured as changes in multimetric 

index (MMI) scores from reference expectations. To develop a pMMI, we followed the approach of 

Vander Laan et al. (in press). In contrast to traditional MMIs, a pMMI reduces the effects of natural 

gradients on metric values by predicting the expected value under a given environmental setting and 

using the residual instead of the raw metric for scoring. Although traditional MMIs may reduce the 

effects of natural gradients through typological approaches (e.g., ecoregions, as in Ode et al. 2005), they 

do not provide site-specific expectations for different environmental settings within each stream type 

(Hawkins et al. 2010).  
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To construct the pMMI, metric values at reference sites were predicted using random forest 

models from GIS-based predictors minimally affected by human activity. These models were developed 

using only the reference calibration data set. Deviation from predicted was measured as the metric 

residual, and scored on a scale from 0 to 1. Unlike O/E approach, the pMMI was calibrated not just by 

reference condition, but also by metric values at stressed sites. Specifically, the range of values from 

reference to stressed sites is used for metric scoring. 

 The pMMI was developed following 6 steps: 1) Metric calculation; 2) Initial model development; 

3) Metric screening; 4) Model refinement; 5) Metric scoring; 6) Index aggregation and standardization. 

Apart from steps 2 and 4, this process is comparable to the steps required to develop a traditional MMI 

(e.g., Stoddard et al.2008). To contrast with a non-site-specific approach "null" MMI was also developed 

by following the same process, but substituting the mean metric value at reference calibration sites for 

site-specific predictions produced by the models. 

Metric calculation 

 Biological metrics that characterize the ecological structure of the benthic community were 

calculated for each sample in the data set. In order to calculate metrics, biological data were first 

standardized with respect to taxonomic effort and sample size. The Standard Effort Level 1 (i.e., most 

taxa to genus, with midges left at family) defined by the Southwest Association of Freshwater 

Invertebrate Taxonomists (SAFIT, Richards and Rogers 2011) was used to standardize taxonomy. 

Samples with more than 500 individuals were then standardized to a count of 500 using random 

sampling without replacement.  

 A suite of 51 widely used bioassessment metrics (Table 4) was then calculated using custom 

scripts in R, as well as the Vegan package (Oksanen et al. 2013) for diversity indices. Conceptually 

related metrics were assigned to metric groups (e.g., % EPT and EPT taxa were assigned to the group 

"EPT metrics"). These metrics and groups are summarized in Table 4. 

Initial model development 

 Preliminary predictive models were developed for all 51 metrics so that residuals from predicted 

values could be screened for inclusion in the pMMI. Because of the large number of models evaluated, a 

quick-and-dirty approach to model development was used prior to metric selection. Therefore, 

refinement of the models (specifically, reducing the number of predictors) would be necessary for only 

selected metrics. 

Initial random forest models were built with 1000 trees for each metric using all 18 candidate 

predictors. Models that explained more than 10% of the variance in the metric were used to predict 

metric values for the full data set, and then calculate metric residuals. Otherwise, raw metric values 

were used for further analysis.  

Metric selection 
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 Metrics were selected in a stepwise fashion that maximized responsiveness to stress and 

minimized redundancy. Responsiveness was quantified as the absolute value of the t-statistic between 

the reference and stressed subsets of the calibration data set (using raw metrics or metric residuals, as 

determined above). The metric with the greatest responsiveness (i.e., highest absolute t-statistic) was 

selected first. Conceptually redundant metrics were excluded from further consideration if they 

belonged to the same metric group as the selected metric (e.g., Coleoptera taxa and percent 

Coleoptera), and statistically redundant metrics were excluded if they had a Person's R2 ≥ 0.5 with the 

selected metric. The next most responsive metric was selected, and the process repeated until there 

were no candidate metrics with an absolute t-statistic greater than 10. 

Model refinement 

 Because the initial random forest models used many candidate predictors, models were refined 

to reduce the number of predictors. In contrast to the manual refinement process used for the O/E, an 

automated approach was used for the pMMI. This automation was useful because of the large number 

of models requiring refinement, even after metric selection. To refine the random forest models for the 

selected metrics, the caret package was used in R to implement recursive feature elimination (Kuhn et 

al. 2012). With recursive feature elimination, predictors are iteratively excluded from the model to 

identify the subset that maximizes the percent variance explained. Subsequently, the selected 

predictors were used to build a new model using the randomForest package using 1000 trees. If the final 

model explained more than 10% of the variance in the metric, metric residuals were used for 

subsequent analysis; otherwise the raw metrics were used. 

Metric scoring 

 Metrics or metric residuals were scored following Cao et al. (2007). Scoring transforms metrics 

or residuals to a standard scale ranging from 0 (i.e., similar to stressed sites) to 1 (i.e., similar to 

reference sites). Metrics that decrease with stress were scored as follows: 

(Observed metric - Mind)/(Maxd - Mind) 

where Mind is the fifth percentile of stressed calibration sites and Maxd is the 95th percentile of 

reference calibration sites; the fifth and 95th percentiles were used instead of minimum or maximum 

values because these distribution points are more robust to outliers, and yield more responsive and less 

variable metrics (Blocksom et al. 2003, Stoddard et al. 2008). Metrics that increase with stress were 

scored as follows: 

(Observed metric - Maxi)/(Mini - Maxi) 

where Mini is the 5th percentile of reference calibration sites, and Maxi is the 95th percentile of stressed 

sites. Scores were then trimmed to 0 or 1. 

MMI  aggregation and standardization 
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The raw index was calculated as the mean score for all selected metrics. This raw index was then 

divided by the mean of reference calibration sites so that the pMMI had a reference expectation of 1 

and was on the same scale as the O/E. 

Performance Evaluation 

 Evaluation of index performance focused on accuracy, precision, and sensitivity. Performance of 

each index compared to its null counterpart. Many of the approaches to measuring performance have 

been widely used in index development literature (e.g., Hawkins et al. 2000, Clarke et al. 2003, Ode et al. 

2008). Because all indices were scored on similar scales (i.e., a minimum of zero, with a reference 

expectation of 1), no adjustments were required to make comparisons (Herbst and Silldorff 2006, Cao 

and Hawkins 2011). 

Accuracy 

 Accuracy was defined as the ability of an index to provide high scores at reference sites, 

regardless of environmental setting.  Operationally, accuracy was evaluated as the closeness of the 

mean of reference scores to 1. However, because the means of reference scores for both MMIs and the 

null O/E were mathematically fixed to 1, this evaluation is only meaningful for validation data. 

 Bias, which is related to accuracy, was evaluated against both categorical gradients and 

continuous gradients. For categorical gradients (e.g., regions), ANOVA was used to evaluate the 

consistency of scores at reference sites among categories. For both calibration and validation data sets, 

scores were compared across regions of the state. A high F-statistics indicates bias. 

 Bias was also evaluated as the percent of variance explained in the indices by a 1000-tree 

random forest model based on several natural gradients (Table 1). Percent variance explained was 

expected to be low (or even negative) if the index was not biased by natural gradients. For this analysis, 

both validation and calibration reference sites were used in a single model.  

 Because random forest cannot accommodate missing data, bias related to field-measured 

values was assessed by regressing index scores against single variables (specifically, % fast-water habitat, 

% sands and fines, and slope). Again, both validation and calibration reference sites were combined for 

these analyses.  

Finally, to see if there was an effect of temporal variability on index, scores from reference sites 

(both calibration and validation), we tested scores against year using ANOVA. Seasonal effects were 

assessed by regressing reference site scores against the cosine of proportion of year.  

Precision 

 Precision was defined as the consistency of scores at among reference sites or within replicate 

samples. It is a product of the variability of the index. Precision was first evaluated as the standard 

deviation of indices at reference sites, for both calibration and validation sets separately. Additionally, 
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precision was evaluated as the mean within-site standard deviation at sites where replicate samples 

were calculated. For both measures, smaller standard deviations indicate better precision. 

Sensitivity 

 Sensitivity was defined as the strength and direction of response of an index to stress. Sensitivity 

is an aggregate property that incorporates both accuracy and precision; that is, sensitivity in an index 

arises when it can accurately detect large differences between stressed and unstressed sites, relative to 

the inherent variability of the index. As with accuracy, sensitivity was evaluated for both categorical and 

continuous gradients. 

  First, sensitivity was evaluated comparing reference and stressed sites. A large t-statistic 

indicates a sensitive index. This analysis was conducted for both the calibration and validation data sets 

separately.  

 Because the t-test examines differences in scores only at the extreme ends of the stressor 

gradient (i.e., reference vs. highly stressed sites), additional analyses were conducted to assess response 

across a broader range of this gradient. For example, sensitivity was also evaluated as the percent of 

variance explained in the indices by a 1000-tree random forest model based on stressor gradients (Table 

2). For this analysis, a sample from every site in the data set (i.e., reference, stressed, and intermediate 

sites) was used in a single model. A large percent of variance explained indicates good sensitivity of the 

index to stressor gradients. Because random forest cannot accommodate missing data, field-measured 

variables were excluded from this analysis. 

 Finally, sensitivity to selected stressors was examined using bivariate plots to examine the range 

and shape of the response. Because this approach does not have the data requirements of the random 

forest approach, field-measured stressors (e.g., W1_Hall, % Sands and Fines) were included in the 

analysis. 

Comparing the endpoints in different settings 

 To see if environmental setting affected agreement between the two endpoints, pMMI scores 

were regressed against the O/E. Levels of agreement were determined by setting benchmarks at the 1st 

and 10th percentiles of the reference calibration distribution:  Samples with scores above the 10th 

percentile for an endpoint were considered to be in reference condition for that endpoint, and samples 

with scores below the 1st percentile were considered to be in non-reference condition for that endpoint; 

sites with scores between these two benchmarks for either index were considered to be ambiguous and 

excluded from further analysis of agreement.  Logistic regression was then used to see if probability of 

disagreement between the two endpoints depended on environmental setting defined by E. 

 To see if the O/E was less sensitive than the pMMI to loss of taxa in “low E” settings (e.g., E < 

10), we compared the proportion of sensitive taxa expected by both endpoints under different settings 

defined by E. This analysis assumes that loss of sensitive taxa is the major component of the response to 

disturbance across settings. For the pMMI, this proportion was calculated as the predicted percent 
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intolerant taxa metric, as described above. For the O/E, this proportion was calculated as the percent of 

OTUs expected that are sensitive (specifically, OTUs with a median tolerance value < 3). Estimates from 

both the O/E and pMMI were plotted against E to see if they allowed consistent ranges of response 

across environmental settings. These predictions were also compared to the observed % intolerant taxa 

at reference sites to confirm the validity of these estimates.  

Combining the endpoints  

 We explored combining the two endpoints into a single index because of the potential 

advantages of using multiple ways of characterizing benthic macroinvertebrate community structure. 

Furthermore, a combined index may have better or more consistent performance than the individual 

endpoints, given that each was suspected to lose sensitivity in certain settings or under certain types of 

disturbance. Therefore, a combined index (the California Stream Condition Index, CSCI) was calculated 

by averaging the pMMI and O/E. A null equivalent was calculated by averaging the null MMI and O/E. 

Establishing and evaluating site-specific thresholds 

 To see if site-specific thresholds improved the accuracy of assessment indices, two approaches 

to establishing impairment thresholds were evaluated: A traditional, non-site-specific approach based 

on the variability of all reference calibration sites, and a site-specific approach based on a subset of the 

most environmentally similar reference calibration sites. In both cases, sites were considered to be in 

reference condition if the score was greater than the 10th percentile of the relevant set of reference 

sites. Only the combined index was used in this analysis. 

 In order to establish site-specific thresholds, pairwise environmental distances along four 

gradients (elevation, precipitation, temperature, and watershed area) were measured using Euclidean 

distance on range-standardized variables (i.e., observed value minus the minimum value, divided by the 

maximum minus the minimum values). For each test site, a set number of nearest reference calibration 

sites (25, 50, 75, 100, and 200, as well as the full set of 473) were identified. Scores at test sites were 

transformed into percentiles relative to each of these distributions. 

Performance of thresholds 

 Performance of the different approaches to establishing thresholds was evaluated in multiple 

ways. First, ANOVAs were performed on percentile-transformed scores to determine if there was a bias 

among regions within reference site scores. Second, error rates were calculated as the portion of 

reference sites with scores in the lower 10th percentile, and as the portion of stressed sites with scores 

higher than the 10th percentile. These tests were performed on calibration and validation data sets 

separately, and for both the null and predictive index. 
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Results 

Biological diversity reflects environmental diversity 

 Biological community structure varied strongly across natural gradients within the state, as 

indicated by multivariate analysis and evaluation of bioassessment metrics. For example, visual 

examination of the dendrogram produced by cluster analysis yielded 11 groups, ranging in size from 13 

to 61 members (Figure 2). Although a few of these groups were geographically restricted, most were 

distributed across many regions of the state. For example, group 10 was concentrated in the Transverse 

Ranges of Southern California, and group 7 was entirely within the Sierra Nevada. In contrast, groups 1 

and 4 were broadly distributed across the northern two-thirds of California. Environmental gradients 

associated with this geographic distribution were different among several groups. For example, groups 8 

through 11, all located in the southern portions of the state, were generally drier and hotter than other 

groups. Biotic groups varied strongly by richness, affecting the expected number of taxa in each group. 

For example, the median number of expected taxa (i.e., sum of capture probabilities > 0.5) in group 3 

was 17.2, but only 7.8 in group 11. The median number of expected taxa was below 10 for three of the 

eleven groups. These low-E groups were preponderantly located in the southern portions of the state. 

Similarly, metric values also varied strongly by natural gradients at reference sites (slope of regression: 

1.4 ± 0.07 standard error. R2: 0.33). For example, the number of EPT taxa observed at reference sites 

ranged from ~10 at the southern part of the state to more than 20 in the northern reaches. 

Predictive models can create useful site-specific expectations 

 Predictive models successfully created site-specific expectations for both the multivariate 

endpoint (i.e., expected number of taxa) and the majority of metrics that were evaluated. Model and 

index development are discussed in each section below. 

Predicting number of taxa 

A random forest model based on five predictors (i.e., latitude, elevation, watershed area, 

rainfall, and temperature, Table 1) successfully predicted the number of taxa at reference sites, despite 

a fairly high out-of-bag classification error rate (i.e., 58%, ranging from 36% to 92% by group). For 

example there was a strong relationship between expected and observed taxa at reference sites, with 

an adjusted r2 of 0.74 (calibration) and 0.64 (validation) at reference sites; the slope (i.e., 1.05 and 0.99 

at calibration and validation reference sites, respectively) and intercept (i.e., -0.36 and 0.52) were both 

similar to what would be expected from a perfect prediction (i.e., slope of 1 and intercept of 0) (Figure 

3).   

Predicting metric values (and developing the pMMI) 

All metrics 

 Predictive models successfully the reduced confounding influence of natural gradients in most 

metrics, yielding site-specific reference expectations (Table 4). For example, of the 51 metrics screened 



 

13 
 

for inclusion, initial random forest models (i.e., those based on all 18 candidate predictors) explained 

more than 10% of the variance for 36 of them; for 6 metrics, more than 40% of the variance was 

explained. Models that explained large amounts of variance were observed for all metric groups, apart 

from invasive species metrics. In general, models explained the most variance for percent-taxa metrics, 

and the least for percent-abundance metrics, although this pattern was not consistent for all metric 

types. 

Metrics selected for pMMI 

 The metric selection procedure yielded a pMMI comprised of eight metrics, all of which were 

based on residual predictive models (Table 5). The variance explained by the models was high for several 

metrics. For example, the random forest model explained more than half the variance in the % 

intolerant taxa metric, and more than 40% of the shredder taxa and clinger taxa metrics.  However, only 

12% of variance was explained for collector taxa and % non-insect taxa metrics.  

 The selected metrics represented a variety of broad metric classes (Table 5). Three of the 

metrics were based on taxonomic characteristics, two on functional feeding groups or tolerance values, 

and one on habit. Some metrics (e.g., Coleoptera Taxa, % Non-Insect Taxa) were similar to those used in 

regional indices previously developed in California (e.g., Ode et al. 2005). However, some widely used 

metrics (e.g., EPT metrics) were not selected because they were highly correlated with other metrics 

that had greater responsiveness to stress in calibration data (Table 4). 

 Final random forest models for these 8 metrics varied in their ability to predict values of 

selected metrics at reference sites (Table 5, Figure 3). The percent variance explained by each random 

forest model ranged from a low of 12 (for % Collector taxa and % Noninsect taxa) to a high of 53 (for % 

Intolerant taxa). For calibration data, intercepts of regressions of observed versus expected values were 

significantly lower (p < 0.05) than zero for every metric, suggesting that  models systematically under-

predicted metric values at reference sites; however, p-values were higher for validation data, and were 

under 0.05 for only two metrics (i.e., Shannon diversity and Collector taxa). Slopes for calibration data 

were not significantly different from 1 for any metric; for validation data, significantly smaller slopes 

were observed for three metrics (i.e., Shannon diversity, Collector taxa, and % Noninsect taxa). Although 

correlation coefficients between observed and expected values at reference sites were very high 

(adjusted R2 >0.9) for all metrics), relationships were weaker for validation data, with R2 ranging from 

0.07 (for Collector taxa) to 0.60 (for % Intolerant taxa).  

 The number of predictors used in these eight models ranged from eight (for Clinger Taxa) to all 

18 (for Coleoptera Taxa, Tolerance Value, and % Collector Taxa) (Table 1). Predictors related to location 

(e.g., latitude, elevation) were used in all models, whereas predictors related to geology (e.g., soil 

erodibility) or catchment morphology (e.g., watershed area) were used less often. In general, the most 

frequently used metrics also had the highest importance, as measured by % increase in mean-squared 

error. The least frequently used predictor (i.e., % nitrogenous geology) was used in three models.  

Indices based on predictive models have superior performance to null indices 
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Effects of predictive modeling on bioassessment metrics 

For most metrics, reducing the influence of natural gradients through predictive modeling 

improved discrimination ability (Table 4).  For example, in 37 of the 51 metrics evaluated, the t-statistic 

was greater for the residuals than the raw metric; only 8 metrics had greater discrimination ability 

(difference in t-statistic > 0.1) for the raw metrics than the residuals, and for 6, the difference in the t-

statistic was less than 0.1.  

Performance evaluation of the O/E, pMMI, and the combined index 

By all measures, the predictive indices (whether used alone or combined) performed much 

better than their null counterparts, particularly with respect to bias (Table 6). For example, regional 

differences in scores at reference sites were large and significant for all null indices (Table 6 Part B, 

Figure 4), and responses to natural gradients were strong (Figure 5). In contrast, these biases were 

greatly diminished for predictive indices. Biases were reduced even for gradients unrelated to predictors 

used in predictive models, such as date of sampling.  

Predictive modeling also improved several aspects of precision. Variability of scores at reference 

sites was lower for all predictive indices than for their null counterparts, particularly for the pMMI (Table 

6). Regional differences in precision were larger for the MMIs than the O/Es (even with predictive 

models), and combining these two endpoints into a single index appeared to improve regional 

consistency in variability of the CSCI (Figure 4). Predictive modeling had a negligible effect on within-site 

replicability (Table 6 Part B). 

In contrast to precision and accuracy, sensitivity was more affected by endpoint than index type. 

Specifically, the MMIs (both predictive and null) were slightly more sensitive than the combined indices, 

which in turn were more sensitive than the O/Es. This pattern was evident in all measures of sensitivity, 

such as the magnitude of t-statistics, variance explained by multiple stressors in a random forest model, 

or steepness of slopes against individual stressor gradients (Tables 6 Part B, Figure 6).  

Setting may affect index sensitivity 

Overall agreement between the two indices was high, but with a relative positive bias for the 

O/E, consistent with its lower sensitivity (Adjusted R2 = 0.54, slope = 0.76 ± 0.02, intercept = 0.11 ± 0.01) 

(Figure 7). Consequently, the overwhelming majority of sites (98%) where the indices unambiguously 

disagreed (n=373) were in better condition for the O/E than the pMMI. These disagreements were 

preponderant in low-E settings (e.g., <10). Logistic regression showed that the probability of 

disagreement was highest when E was low (probability of disagreement = 0.84 - 0.17 E, p <0.01, n = 

1448). 

Sensitivity of the MMI was greater in certain settings because the O/E had limited range of 

response in low-E settings, where few sensitive taxa are expected (Figure 8). For settings with more than 

14 expected taxa, the proportion of sensitive taxa expected was consistently ~0.35. However, where E 

was lower than 14, the proportion of sensitive taxa expected decreased linearly, reaching zero at E of 
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~6. In contrast, when percent sensitive taxa was directly modeled (as in the pMMI), the decline is less 

severe (i.e., from ~0.40 to 0.20). Inspection of the data at reference sites indicates that sensitive taxa 

were truly present at these low-E settings (right panels in Figure 8) and that directly modeling the metric 

sets more accurate expectations for sensitive taxa in these settings (metric prediction vs. observed R2 = 

0.80; O/E prediction versus observed R2 = 0.55). However, these taxa were excluded from the index 

because of the minimum capture probability (i.e., 50%). Therefore, the predictive metric and not the 

O/E will be able respond to the loss of sensitive taxa in low-E settings. 

Site-specific thresholds do not improve predictive indices 

 Establishing site-specific expectations obviated the need for site-specific thresholds. Site-specific 

thresholds had little impact on the performance of predictive models, but greatly reduced the bias of 

null models (Figure 9). In other words, once site-specificity was accommodated by predictive modeling, 

further accommodations were unfruitful. For example, the large regional differences evident in the null 

index scores decreased as the number of neighbors increased, approaching values of the ANOVA F-

statistic observed for predictive models when 25 neighbors were used. In contrast, bias was low for 

predictive models, regardless of how many neighbors were used for comparison. Nonetheless, error 

rates were minimally affected by number of neighbors for either null or predictive models. In general, 

null models had lower reference error rates, and predictive models had lower stressed error rates, but 

neither index type responded strongly to changes in numbers of neighbors (data not shown). 

 Although using nearest neighbors improved the accuracy of null models, there was a tradeoff 

with sensitivity, as shown by the increased error rate in scoring stressed sites. For both stressed 

calibration and validation sets, the lowest error rate for the null models using all neighbors (data not 

shown). 
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Discussion 

Many of the recent technical advances in bioassessment have centered on improving the 

performance of tools used to score the ecological condition of waterbodies. Much of the progress in this 

area has come from regional, national and international efforts to produce overall condition 

assessments of streams in their regions (Simpson and Norris 2000, EMAP papers, Hawkins 2006, Hering 

et al. 2006, Stoddard et al. 2006, Van Sickle et al. 2005,  EU papers, Environment Canada, USEPA-NARS). 

A key challenge in completing these projects has been incompatibility among scoring tools designed to 

assess regions of different spatial scales. This issue has been well-documented for large scale programs 

attempting to integrate data from a patchwork of scoring tools built for smaller regions (Heinz Center 

2002, Hawkins 2006, Meador et al. 2008, Pont et al. 2009, EU papers), but far less attention has been 

paid to the limitations of applying large regional tools to local scale assessments, particularly at the scale 

of individual stream reaches (Herlihy et al. 2008, Ode et al. 2008).  

Ultimately, successful implementation of bioassessment techniques in a variety of applications 

requires that scoring tools perform well at both objectives: consistency throughout the region and 

accuracy at the site. Most scoring tools built to support large area condition assessments explicitly 

consider site-specific accuracy during model building and evaluation (see Hawkins 2006, REFs). However, 

these condition assessments don’t require as much site-specific accuracy as site-specific applications.  As 

long as over- and under-estimates of site condition balance each other, the resulting overall condition 

assessment will be unaffected (Ode et al. 2008, Yuan et al. 2008). In contrast, both consistency and site-

specific accuracy are critical for assessments at local scales, particularly for regulatory applications. If an 

assessment tool sets biological expectations that are inappropriate for a site, inaccurate assessments 

may trigger costly and unnecessary remediation.  

 Our success in achieving high levels of both statewide consistency and site specificity in the CSCI 

was the result of three elements of its development. The first element was the large, representative, 

and rigorously evaluated reference data set (Ode et al. in review). To create an assessment tool that 

incorporates site-specificity, natural gradients that influence biological assemblages need to be fully 

accounted for (Stoddard et al. 2006).  Even gradients that are broadly unimportant may be locally 

influential (Ode et al. 2008), and these gradients should be adequately represented in the reference 

data set. The data set we used required more than 10 years to collect the hundreds of samples 

necessary to capture the diversity of natural gradients throughout the state, is described by Ode et al. 

(in review).  The breadth of sampling for reference sites across both space and time provides confidence 

in the applicability of the CSCI for the vast majority of wadeable perennial streams in California.  

The second component that enabled the CSCI to achieve both consistency and site specificity 

was predictive modeling.  Predictive modeling enabled the creation of site specific expectations for a 

variety of endpoints, and these models created superior indices to those created by null models in 

nearly every aspect, particularly with respect to bias in certain settings. These results are consistent with 

a large body of literature showing similar results for multivariate-based species loss indices (e.g., 

Reynoldson et al. 1997, Hawkins and Norris 2000, Van Sickle et al. 2005, Hawkins 2006, Mazor et al. 

2006), but one of the first to show that the benefits are even greater for multi-metric indices.  
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The null multi-metric indices evaluated in this study were intentionally simplistic and do not 

reflect the more typical typological approaches to multi-metric index development, such as 

regionalization in metric selection (e.g., Stoddard et al. 2008), regionalization in scoring (e.g., Ode et al. 

2005), or normalization to watershed area (e.g., Klemm et al. 2003) to account for variability in 

reference sites.  However, regionalizations that lack standardization complicate inter-regional 

comparisons, especially for sites located near regional boundaries, inviting contentious arguments 

regarding applicability. Even if typological approaches provided equivalent performance to predictive 

indices, the latter would be preferred because of their improved interpretability.   

The third component that enabled the CSCI to achieve both consistency and site specificity was 

the inclusion of multiple endpoints.  The decision to combine endpoints for the CSCI was based, at least 

partly, on observations that the two endpoints had different sensitivities in different settings.  For 

example, in drier, low elevation settings, the taxonomic completeness endpoint only predicted a small 

number of highly tolerant taxa (e.g., baetid mayflies) to occur since these tolerant taxa normally occur in 

these naturally stressful environments.  Sensitive taxa also occur at reference sites in drier, low-

elevation settings, but they were typically too rare to affect the O/E index.  The O/E did have some 

advantages over the pMMI. Notably, validation was better for the O/E than the pMMI. This result may 

be expected considering the more extensive calibration required for the pMMI. Although we were 

satisfied with the validation of both endpoints, the superior validation of the O/E should be considered 

its strength. Combining the O/E with the pMMI was an effective way to retain high sensitivity across 

these environmental settings.  

In addition to the respective technical strengths of the two endpoints, there are several 

philosophical reasons why the combination of endpoints into a single CSCI results in a tool with more 

robust and defensible applicability (see Collier 2009). Whereas the O/E is sensitive to species loss and 

has clear application to biodiversity conservation, MMIs provide an explicit measure of other aspects of 

ecosystem function, like changes to trophic structure. MMIs are calibrated specifically designed to 

respond to stress, while O/Es only measure deviation from a reference state, independent of stressor 

gradients. Their different sensitivities enhance the utility of the combined index across a broader range 

of disturbances and function as multiple lines of evidence, providing greater balance and confidence in 

the results than a single index.  

This study may reflect the limits of how much site specificity can be incorporated in an 

assessment tool intended for use in an environmentally complex region. Predictive models were only 

able to explain a portion of the variability observed at reference sites—sometimes a fairly small portion. 

For example, the standard deviation in the predictive O/E was only slightly lower than the null O/E (i.e., 

0.19 vs. 0.21). Similarly, random forest models explained as little as 12% of the variability for certain 

metrics (specifically, % collector taxa and % non-insect taxa).  The unexplained variance may be related 

to environmental gradients that are unsuitable for setting biological expectations (e.g., alterable 

gradients, like substrate composition or canopy cover), to gradients unrelated to those used for 

modeling (e.g., temporal gradients, like weather antecedent to sampling), or field and laboratory 

sampling error.  Given the number and breadth of gradients evaluated for modeling, as well as the 

apparent lack of bias to gradients not used in modeling (e.g., date of sampling, substrate, slope), it is 
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unlikely that additional data or advanced statistical methods will greatly change the performance of 

these indices. 

 Our evaluation of site-specific thresholds reinforces the conclusion that predictive modeling 

alone achieved as much consistency as practical for this data set. Unlike Yuan et al. (2008), we did not 

see improvements to predictive indices when variable thresholds were used, perhaps because of the 

different scales of the two studies (i.e., nationwide vs. statewide). For the null index, where 

environmental gradients are not accounted for, there were large differences in site-specific thresholds 

between sub-regions of California.  These differences increased as additional reference sites were 

added.  However, the site-specific thresholds for the predictive model were much more similar between 

regions, and these differences did not change regardless of sample size.  This pattern suggests that 

predictive modeling used for the CSCI is sufficient to account for natural variability at the range of 

reference sites in California. In light of the potential complications site-specific thresholds may impose 

on regulatory applications of the index, predictive indices were clearly preferable.  

Conclusions 

Many applications of bioassessment require that scoring tools perform well at the two objectives we 

addressed in this study: regional consistency and site-specific accuracy. Whereas condition assessments 

of large regions provide valuable context for interpreting local data, application to local management 

questions requires that tools give accurate assessments on every site where they are used. The 

proliferation of bioassessment literature in the past two decades documents a global shift toward the 

emphasis of ecological assessment techniques in aquatic resource management. However, there is still a 

long way to go before bioassessment realize its full potential for improving the management of stream 

health. In the USA and elsewhere, improving the technical capabilities of regional governments to 

produce accurate assessments is a key emphasis of national programs (USEPA 2013). Scoring tool 

performance should be viewed an important component of these capabilities 
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Table 3. Number of sites used to develop the index. Cal: Calibration data set. Val: Validation data set. 

  Reference Stressed Intermediate 

Region Cal Val Cal Val   

North Coast 60 16 40 13 115 

Chaparral 74 19 40 102 192 

--Coastal Chaparral 48 13 36 91 148 

--Interior Chaparral 26 6 4 11 44 

South Coast 96 23 48 220 287 

--South Coast Mountains 69 17 8 2 111 

--South Coast Xeric 27 6 40 218 176 

Central Valley 1 0 40 18 11 

Sierra Nevada 221 55 26 6 186 

--Western Sierra Nevada 105 26 18 4 96 

--Central Lahontan 116 29 8 2 90 

Deserts / Modoc 21 4 3 2 46 

Total 473 117 197 361 837 
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Table 1. Predictors and their importance for random forest models of each endpoint and metric. MSE: Mean-squared error. Dashes indicate that 

the predictors were not used to model the metric. Sources: A. National Elevation Dataset (http://ned.usgs.gov/). B. PRISM climate mapping 

system (http://www.prism.oregonstate.edu). C: Generalized geology, minerology, and climate data from conductivity prediction model (Olson 

and Hawkins 2012). 

      Predictor importance (% increase MSE)   
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Source 

Location            

   New_Long Longitude -- 0.08 0.002 0.11 1.3 0.9 10.7 0.8 0.0006  

 New_Lat Latitude 0.09 0.06 0.004 0.17 1.4 1.2 10.5 0.6 0.0006  

 SITE_ELEV Elevation 0.11 0.05 0.004 0.05 0.8 0.4 6.3 1.2 0.0012 A 

Catchment            

 LogWSA Log watershed area 0.06 -- -- 0.02 0.3 1.3 -- 0.1 -- A 

 ELEV_RANGE 
Difference in elevation between sample point and 
highest point in catchment -- 0.01 -- 0.03 0.4 0.2 3.2 -- -- A 

Climate            

 TEMP_00_09 10-y (2000-2009) average tempearture 0.09 0.04 0.005 0.09 0.8 0.6 6.2 0.4 0.0008 B 

 PPT_00_09 10-y (2000-2009) average precipitation 0.07 0.02 0.003 0.12 0.6 0.9 4.5 0.3 0.0006 B 

 SumAve_P 
Average of mean June to Sep 1971 to 2000 monthly 
ppt -- 0.01 0.003 0.07 0.4 0.2 4.6 0.3 0.0005 B 

Geology            

http://ned.usgs.gov/
http://www.prism.oregonstate.edu/
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   KFCT_AVE Average soil erodibility factor (K) -- 0.02 0.003 0.05 0.7 0.2 -- 0.4 -- C 

 BDH_AVE Average bulk density -- 0.02 -- 0.07 0.4 0.3 4.2 0.3 0.0004 C 

 MgO_Mean % MgO geology -- 0.01 -- 0.04 0.4 0.2 -- 0.2 0.0002 C 

 Log_P_MEAN Log % P geology -- 0.01 -- 0.05 0.3 0.2 -- 0.2 0.0003 C 

 CaO_Mean % CaO geology -- 0.01 -- 0.03 0.3 0.2 -- 0.1 0.0002 C 

 PRMH_AVE Average soil permeability -- 0.01 0.002 0.02 0.9 -- -- 0.4 0.0002 C 

 S_Mean % S geology -- 0.01 -- 0.02 0.3 0.2 -- 0.1 -- C 

 PCT_SEDIM % Sedimentary geology -- 0.01 -- -- 0.3 -- -- 0.1 0.0001 C 

 LPREM_mean Average log geometric mean hydraulic conductivity -- -- 0.002 0.04 -- 0.2 -- 0.2 0.0002 C 

  Log_N_MEAN Log % N geology -- -- -- 0.02 0.2 -- -- 0.1 -- C 
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Table 2. Stressors and other environmental gradients used to evaluate index performance. WS: 

Watershed. 5K: Watershed clipped to a 5-km buffer of the sample point. 1K: Watershed clipped to a 1-

km buffer of the sample point.  Variables marked with an asterisk (*) indicate those used in the random 

forest evaluation of index sensitivity. W1_HALL: proximity-weighted human activity index (Kaufmann et 

al. 1999). Sources are as follows: A: National Landcover Data Set. B: Custom roads layer. C: National 

Hydrography Dataset Plus. D: National Inventory of Dams. E: Mineral Resource Data System. F: Predicted 

specific conductance (Olson and Hawkins 2012). G: Field-measured variables. 

Variable Scale Threshold Unit Source 

* % Agriculture 1k, 5k, WS 3 % A 

* % Urban 1k, 5k, WS 3 % A 

* % Ag + % Urban 1k and 5k 5 % A 

* % Code 21 1k and 5k 7 % A 

*  WS 10 % A 

* Road density 1k, 5k, WS 2 km/km2 B 

* Road crossings 1k 5 crossings/ km² B, C 

*  5k 10 crossings/ km² B, C 

*  WS 50 crossings/ km² B, C 

* Dam distance WS 10 km D 

* % canals and pipelines WS 10 % C 

* Instream gravel mines 5k 0.1 mines/km C, E 

* Producer mines 5k 0 mines E 

 Specific conductance site 99/1** prediction interval F 

 W1_HALL reach 1.5 NA G 

 % Sands and Fines Reach  % G 

  Slope Reach   % G 

** The 99th and 1st percentiles of predictions were used to generate site-specific thresholds for specific 

conductance. Because the model was observed to under-predict at higher levels of specific conductance 

(data not shown), a threshold of 2000 µS/cm was used as an upper bound if the prediction interval 

included 1000 µS/cm. 
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Table 4. Metrics evaluated for inclusion in the pMMI. Subheaders identify metric groups. EPT: 

Ephemeroptera, Plecoptera, and Trichoptera. Index: Indicates whether metric was selected for inclusion 

in the predictive (p) or null (n) MMI. Variance explained: Percent variance explained by the initial 

random forest model based on all candidate predictors. t (null): t-statistic for the comparison of the raw 

metric between the reference and stressed samples within the calibration data set. t (pred): t-statistic 

for the residual metrics. Max R2: Maximum Pearson correlation coefficient between the metric (or 

metric residual if variance explained ≥ 10) and the selected metrics.  Tolerance, functional feeding 

group, and habit data were from CAMLnet (2003). Taxa included in the invasiveness metrics were 

predominantly Potamopyrgus antipodarum, Melanoides tuberculata, Corbicula sp., and most crayfish 

species. 

Metric Index Variance explained t (null) t (pred) Max R2 Response 

Taxonomy       

    Taxonomic Richness  28 10.1 15.4 0.67 Decrease 

 Shannon Diversity p 19 7.4 10.4 0.45 Decrease 

 Simpson Diversity  10 4.6 5.0 0.69 Decrease 

 % Dominant  17 -6.2 -8.8 0.91 Increase 

 % EPT n 18 10.2 11.5 0.59 Decrease 

 % EPT Taxa  34 16.3 15.1 0.62 Decrease 

 EPT Taxa  43 14.3 18.2 0.82 Decrease 

 % Coleoptera  12 2.7 8.6 0.27 Decrease 

 % Coleoptera Taxa  31 6.4 12.6 0.78 Decrease 

 Coleoptera Taxa  36 7.5 16.8 0.37 Decrease 

 % Diptera  11 1.2 1.4 0.13 Decrease 

 % Diptera Taxa  16 -2.5 0.9 0.07 Decrease 

 Diptera Taxa  1 7.8 11.6 0.29 Decrease 

 % Chironomidae  11 -0.1 0.0 0.15 Decrease 

 % Non-insect  8 -10.8 -9.5 0.44 Increase 

 % Non-insect Taxa p, n 12 -15.3 -15.9 0.44 Increase 

 Non-insect Taxa  5 -7.8 -7.1 0.24 Increase 

Tolerance       

 % Intolerant  24 14.4 17.7 0.61 Decrease 

 % Intolerant Taxa p, n 53 18.1 18.1 0.49 Decrease 

 Intolerant Taxa  51 15.9 18.4 0.74 Decrease 

 % Tolerant  13 -8.0 -5.2 0.36 Increase 

 % Tolerant Taxa  25 -14.8 -14.3 0.56 Increase 

 Tolerant Taxa  9 -9.5 -4.9 0.18 Increase 

 Tolerance Value p 26 -12.7 -14.0 0.36 Increase 

Functional Feeding Group       

 % Collectors  8 -6.4 -9.6 0.23 Increase 

 % Collector Taxa p 23 -6.9 -5.1 0.21 Increase 

 Collector Taxa  13 8.6 13.3 0.44 Decrease 
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 % Predators  10 1.7 1.9 0.15 Decrease 

 % Predator Taxa  16 2.7 0.0 0.03 Increase 

 Predator Taxa  12 8.1 8.7 0.39 Decrease 

 % Scrapers  10 4.0 8.6 0.12 Decrease 

 % Scraper Taxa  27 2.6 5.5 0.18 Decrease 

 Scraper Taxa  42 7.0 13.7 0.60 Decrease 

 % Shredder  17 6.5 9.8 0.20 Decrease 

 % Shredder Taxa  30 9.5 9.5 0.75 Decrease 

 Shredder Taxa p, n 42 10.4 14.8 0.24 Decrease 

Habit       

 % Burrowers  14 -5.4 -5.6 0.27 Increase 

 % Burrower Taxa  7 -7.9 -7.4 0.27 Increase 

 Burrower Taxa  5 4.0 6.9 0.09 Decrease 

 % Climbers  -6 -0.7 6.0 0.03 Decrease 

 % Climber Taxa  22 -5.4 -2.7 0.02 Increase 

 Climber Taxa  20 0.4 7.7 0.21 Decrease 

 % Clingers n 6 10.2 10.8 0.27 Decrease 

 % Clinger Taxa  34 12.3 11.5 0.53 Decrease 

 Clinger Taxa p 43 14.3 20.8 0.49 Decrease 

 % Swimmers  4 -2.3 1.1 0.01 Decrease 

 % Swimmer Taxa  24 -6.0 -2.9 0.14 Increase 

 Swimmer Taxa  7 5.3 10.7 0.22 Decrease 

Invasiveness       

 %Invasive  0 -3.7 -3.7 0.06 Increase 

 % Invasive Taxa  0 -7.3 -7.3 0.22 Increase 

  Invasive Taxa   0 -7.7 -7.7 0.19 Increase 
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Table 5. Summary of selected metrics.  Cal: Results for calibration data. Val: Results for validation data. t-statistic: Value from student’s t-test 

comparing reference and stressed sites, using pooled variance. Regression statistics refer to the relationship between predicted and observed 

values. SE: Standard Error. Slopes marked with an asterisk are significantly different from 1 (p<0.05). Intercepts marked with an asterisk are 

significantly different from 0 (p < 0.05). R2: Pearson correlation between predicted and observed values. Min: Minimum value used for scoring. 

Max: Maximum value used for scoring. 

Metric 
Development 

Set 
Variance 
explained t-statistic Slope SE Intercept SE R2 Min Max 

Shannon diversity Cal 20 10.6 1.33 0.02 -0.77* 0.04 0.91 -1.5 0.3 

 Val  13.3 0.55* 0.14 1.09* 0.33 0.11   

% Intolerant taxa Cal 53 17.8 1.17 0.02 -0.06* 0.01 0.93 -0.3 0.1 

 Val  15.9 1.09 0.08 -0.03 0.03 0.60   

Tolerance Value Cal 28 -14.1 1.27 0.02 -1.16* 0.08 0.91 -0.6 2.5 

 Val  -10.9 0.91 0.14 0.38 0.61 0.25   

Collector taxa Cal 12 13.2 1.43 0.02 -4.93* 0.21 0.93 -8.7 2.0 

 Val  12.9 0.60* 0.20 4.70* 2.30 0.07   

Shredder taxa Cal 41 14.7 1.25 0.02 -0.80* 0.06 0.93 -3.5 1.2 

 Val  8.4 0.87 0.11 0.18 0.39 0.36   

Clinger taxa Cal 44 19.6 1.20 0.02 -3.03* 0.27 0.91 -13.8 3.6 

 Val  14.8 0.91 0.12 1.47 1.79 0.35   

Coleoptera taxa Cal 36 17.0 1.24 0.02 -0.73* 0.06 0.92 -4.1 1.2 

 Val  16.2 0.82 0.11 0.48 0.37 0.32   

% Noninsect taxa Cal 12 -16.2 1.40 0.02 -0.06* 0.00 0.91 0.0 0.5 

  Val  -19.7 0.62* 0.18 0.06 0.03 0.09     
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Table 6. Part A. Means and standard deviations of each site set for each index. Part B. Performance 

measures to compare indices. For accuracy tests, only reference sites were used. F (cal): F statistic for 

differences in scores at calibration sites among 5 PSA regions (excluding Central Valley; 467 residual df). 

F (val): F statistic for differences in scores at validation sites among 5 PSA regions (excluding Central 

Valley; 112 residual df). VarExp: Variance in index scores explained by natural gradients at reference 

sites (n=590). Precision: SD: Mean within-site standard deviation for scores at 820 replicated sites. 

Sensitivity: t.cal: t-statistic for comparing reference and stressed sites in the calibration data set. t.val: t-

statistic for comparing reference and stressed sites in the validation data set. VarExp: Variance in index 

scores explained by stressor gradients at all sites (n=1985). 

Part A 

    Reference Stressed Intermediate 

  Calibration Validation Calibration Validation   

Form Type Mean SD Mean SD Mean SD Mean SD Mean SD 

CSCI Predictive 1.01 0.12 0.99 0.16 0.67 0.24 0.61 0.21 0.88 0.20 

 Null 1.00 0.20 1.00 0.20 0.62 0.31 0.48 0.25 0.83 0.25 

MMI Predictive 1.00 0.08 0.95 0.16 0.59 0.26 0.52 0.21 0.83 0.21 

 Null 1.00 0.25 0.99 0.26 0.53 0.37 0.38 0.29 0.79 0.31 

O/E Predictive 1.02 0.19 1.03 0.19 0.75 0.25 0.71 0.24 0.94 0.23 

  Null 1.00 0.21 1.00 0.21 0.70 0.27 0.59 0.25 0.87 0.25 

 

Part B 

    Accuracy  Precision  Sensitivity 

Form Type F (cal) F (val)  VarExp  Within-site SD  t.cal t.val VarExp 

CSCI Predictive 1.1 1.3  -9    0.08    23 26 53 

 Null 49.7 6.8  38  0.08  20 28 65 

MMI Predictive 0.4 1.2  -17  0.08  26 29 63 

 Null 44.5 10.0  39  0.11  20 27 63 

O/E Predictive 1.2 1.0  -3  0.11  18 18 32 

  Null 23.5 0.9  17   0.10   17 22 48 
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Figure 1. Regions and subregions of California. NC: North Coast. CHco: Coastal Chaparral. Chin: Interior 

Chaparral. SCm: South Coast mountains. SCx: South Coast xeric. CV: Central Valley. SNws: Sierra Nevada-

Western slope. SNcl: Sierra Nevada: Central Lahontan. DMmo: Desert/Modoc-Modoc plateau. DMde: 

Desert/Modoc-Deserts.
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Figure 2. Dendrogram and geographic distribution of each group identified during cluster analysis. 

Numbers next to leaves are median values for expected number of taxa (E), elevation (Elev), 

precipitation (PPT), and temperature (Temp). 
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Figure 3. Expected versus observed values at reference sites. White symbols represent calibration sites, 

and black symbols represent validation sites. The solid line represents the regression for calibration 

data; the dashed line represents the regression for validation data; and the dotted line represents the 

line of perfect prediction.
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Figure 4. Distribution of scores for null and predictive models for the O/E, MMI, and the aggregated 

index (CSCI). The horizontal dashed lines indicate the expected value at reference sites (i.e., 1). 
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Figure 5. Relationships between scores and three habitat gradients at reference sites for predictive (black symbols and lines) and null (gray 

symbols and lines) indices. The dotted line indicates a perfect relationship without bias. 
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Figure 6. Relationships between scores and selected stressors for predictive (black symbols and lines) 

and null indices. 
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Figure 7. Scores for the O/E versus the predictive MMI. White symbols represent reference sites, black 

symbols represent stressed sites, and gray symbols represent intermediate sites. Circles represent 

calibration sites, triangles represent validation sites, and squares represent other sites. The regression 

line is represented as a solid line, and the line of a perfect relationship is shown as a dashed line. The 

gray bars indicate regions between the first and tenth percentiles for each index, representing 

ambiguous areas where agreement was not determined. 
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Figure 8. Left panels: Proportion of sensitive taxa expected versus number of expected taxa at all sites. 

Right panels: Predicted versus observed proportion of sensitive taxa based at reference calibration sites. 

Dark sybmols represent sites with high (>15) numbers of expected taxa; gray symbols represent sites 

with moderate (10 to 15) numbers of expected taxa; and white symbols represent sites with low (<10) 

numbers of expected taxa. The top panels represent predictions based on the MMI, and the bottom 

panels represent predictions based on the O/E. The solid line represents a smoothed fit from a 

generalized additive model.  
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Figure 9. Effects of nearest neighbors thresholds on bias by region. F-statistics are based on ANOVAs of 

percentile-transformed index scores at reference sites by region. Solid black lines represent results for 

the predictive index, and gray dotted lines represent results for the null index. Only results for the 

combined index are presented
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